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speed, the Pacific Decadal Oscillation (PDO), and the 
North Pacific Gyre Oscillation (NPGO) had greater 
ecological importance in driving changes in the four 
pelagic species. The variations in the important cli-
mate events influenced seawater temperature and 
wind speed fluctuations within the HCS, impacting 
on these commercially important pelagic species. 
Furthermore, non-stationarity was identified in the 
relationships between climate/environment and spe-
cies catches, with different species showing different 
threshold years. The non-stationarity may be attrib-
uted to the transitions between warm and cold periods 
within the HCS, as well as shifts between strong and 
weak phases of pressure system. This study helps fur-
ther understand changes in the HCS caused by fluc-
tuations in climate and environment.

Abstract In this study, the four most important 
species in the Humboldt Current System (HCS), 
Engraulis ringens, Sardinops sagax, Trachurus mur-
phyi, and Dosidicus gigas were linked to four climate 
indices, sea surface temperature (SST) and wind 
speed (WS) based on multivariate statistical analy-
ses, aiming to explore their nonstationary responses 
to climate variability. Significant decadal variations 
in the catches were identified, with regime shifts in 
the mid-1970s, early 1990s, and late 1990s. These 
shifts corresponded well to climatic and environ-
ment regime shifts during these periods. However, 
the response patterns to climate and environmen-
tal variations varied among species. Compared with 
other physical drivers, seawater temperature, wind 
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Introduction

An increasing number of studies emphasize the pres-
ence of non-stationary relationships between individ-
uals, populations, or ecosystem structure and climate/
environment in complex marine ecosystem. These 
findings highlight the relationship between biology 
and climate factors characterized by discontinuous 
nonlinear dynamics (Wolkovich et al. 2014; Vasilako-
poulos et al. 2017; Litzow et al. 2018; Damalas et al. 
2021). For instance, in the North Sea ecosystem, the 
relationship between cod and sea surface tempera-
ture (SST)  shifted in the 1970s, associated with non-
linear changes in ecological thresholds and nutrient 
amplification within the ecosystem (Kirby and Bea-
ugrand 2009). In the Gulf of Alaskan, relationship 
between biological abundance and climate was evalu-
ated, it weakened or reversed in the late 1980s, con-
sistent with increased variance in the North Pacific 
Gyre Oscillation (NPGO) (Puerta et  al. 2019). With 
regard to the North Pacific Ocean, non-stationarity in 
climate and ecosystem was found, as well as spatial 
difference in non-stationary between northwest and 
northeast Pacific (Ma et al. 2020). Therefore, analyz-
ing the nonstationary relationship between biological 
and abiotic factors, as well as the underlying mecha-
nisms, is crucial for elucidating the effects of climate 
variability on species or ecosystem changes. This pro-
cess is essential for formulating adaptive management 
strategies based on the consideration of the ongoing 
changes in climate conditions (Williams and Jackson 
2007; Dormann et  al. 2013; Litzow et  al. 2018; Ma 
et al. 2020).

The Humboldt Current System (HCS) is a highly 
productive eastern boundary upwelling ecosys-
tem, influenced by seasonal or permanent coastal 
upwelling (Fig.  1) (Cruz et  al. 2022). This eco-
system is characterized by its susceptibility to El 
Niño–Southern Oscillation (ENSO) events; high pro-
ductivity of pelagic fishes; and presence of shallow, 
intense oxygen minimum zones (OMZ) (Gutiérrez 
et  al. 2016; Ramos et  al. 2022; Yu and Wen 2022). 
The HCS is abundant in four typical, pelagic impor-
tant economic species (PIES), Engraulis ringens, 

Sardinops sagax, Trachurus murphyi, and Dosidicus 
gigas (Cruz et  al. 2022; Ramos et  al. 2022). These 
species are crucial energy pathways in the ecosystem, 
exerting wasp-waist control that influence the stock 
dynamics of both zooplankton and top predators, 
such as large fishes, seabirds, and marine mammals 
(Cury et al. 2000; Fréon et al. 2009). Significant fluc-
tuations in the abundance of these species often affect 
the community composition, and even the entire eco-
system structure variations (Salvatteci et  al. 2019; 
Gonzalez-Pestana et  al. 2022; Yu and Wen 2022). 
Therefore, these four species have been the primary 
research focus for understanding the long-term eco-
system dynamics in the HCS driven by climate vari-
ability (Alheit and Niquen 2004; Alheit et  al. 2009; 
Salvatteci et al. 2019).

Regarding to the four important pelagic spe-
cies in the HCS, E. ringens primarily inhabits the 
coast of south America, covering the upwellings and 
other coast cold water masses with high productiv-
ity, which is directly affected by the changes in the 
trophic dynamic relationship of diatoms, large cope-
pods, and euphausiids (Bertrand et  al. 2011; Moron 
et  al. 2019; Salvatteci et  al. 2019; Briceno-Zuluaga 
et  al. 2023). S. sagax primarily inhabits waters with 
higher sea water temperature and abundant biomass 

Fig. 1  Schematic diagram of the currents and distribution of 
four important pelagic species within the study area. Both solid 
and dashed arrows indicate ocean currents, with blue repre-
senting cold currents and red representing warm currents.
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of small phytoplankton and zooplankton (Bertrand 
et al. 2004; Politikos et al. 2018; Moron et al. 2019; 
Salvatteci et  al. 2019). T. murphyi and D. gigas are 
both the highly migratory species, adapting well to a 
wide temperature range. Specially, T. murphyi tends 
to favor habitats with higher dissolved oxygen con-
centrations (Bertrand et  al. 2016; Li et  al. 2016; Yu 
and Chen 2018; Yu et  al. 2019, 2021). Numerous 
studies indicates that the life history characteristics 
including growth and reproduction, of these four spe-
cies are highly sensitive to environmental variables, 
such as seawater temperature, wind field (referring to 
the 3D spatial patterns of the winds, including direc-
tion, intensity, and variations across different alti-
tudes), etc (Bertrand et  al. 2016; Li et  al. 2016; Yu 
et al. 2021, Belkin and Shen 2023). Climate and envi-
ronmental changes can drive variations in abundance 
and distribution of these species (Yu et al. 2021; Flo-
res-Valiente et  al. 2023). For example, El Niño and 
Pacific Decadal Oscillation (PDO) events influenced 
the spawning, distribution and catch of E. ringens and 
S. sagax, leading to shifts in dominant species dur-
ing the early to mid-1970 (Alheit and Niquen 2004; 
Ñiquen and Bouchon 2004; Hernández-Santoro et al. 
2019; Salvatteci et  al. 2019). Under the cold phased 
of ENSO and PDO, changes in sea surface tempera-
ture and sea surface height within the HCS induced 
the expansion of suitable habitat area for D. gigas (Yu 
et  al. 2019, 2021). Additionally, composition varia-
tions of plankton within the HCS can affect the abun-
dance and distribution of T. murphyi (Bertrand et al. 
2016).

However, current research on PIES within the 
HCS has primarily considered the responses to cli-
mate and environmental factors to be stable, and the 
non-stationarity in the relationships between these 
factors over time has not been evaluated (Salvatteci 
et al. 2014, 2018; Li et al. 2016). Therefore, to further 
analyze the response of PIES in the HCS to climate 
and environment variations, E. ringens, S. sagax, T. 
murphyi, and D. gigas were selected as the research 
targets in this study, on the basis of their total annual 
catch exceeding 1 million tons and extremely climate-
sensitive life history characteristics. The combina-
tion of PIES catch data with climate, SST, and wind 
speed (WS) data was used to analyze the long-term 
trends in catches of these species and their nonsta-
tionary responses to climate stressors. Furthermore, 
the potential mechanisms by which climate variability 

drives the regime shifts in PIES catches were also 
explored. The main objectives of this study are as fol-
lows: (1) to analyze the long-term changes in climate, 
regional environment, and PIES catches in the HCS; 
(2) to identify regime shifts in climate, environmental 
variables, and PIES catches; and (3) to investigate the 
non-stationarity in the evolving relationship between 
PIES catches and abiotic factors such as climate and 
regional environment in the HCS. The findings of this 
study can provide essential insight for the scientific 
management of fisheries resources and ensuring the 
resilience of long-term predictions concerning the 
impacts of climate change.

Materials and methods

Climate, environment, and biology data

PDO index (http:// resea rch. jisao. washi ngton. edu/ pdo/ 
PDO. latest. txt), Southern Oscillation Index (SOI, 
https:// www. esrl. noaa. gov/ psd/ enso/ dashb oard. html), 
NPGO (http:// www. o3d. org/ npgo/), sea surface tem-
perature in the Niño 1+2 region (Niño 1+2, https:// 
www. esrl. noaa. gov/ psd/ enso/ dashb oard. html), as 
well as SST and WS, were chosen to characterize the 
variations in large-scale climate, regional seawater 
temperature and wind field conditions in the HCS. 
These climate indices and environmental variables 
are well documented and have been associated with 
the responses of species, fish communities, and eco-
system structures to variations in climate and envi-
ronment in the Pacific region (Bertrand et  al. 2004; 
Salvatteci et al. 2018; Li et al. 2022; Tam et al. 2021). 
Monthly climate indices data were obtained from 
publicly available datasets from 1950 to 2019. The 
monthly SST and WS grid data, with a resolution 
of 0.5° × 0.5°, were derived from the Hadley Centre 
observations datasets (https:// www. metof ce. gov. uk/ 
hadobs/ hadis st/) and reanalysis datasets (https:// psl. 
noaa. gov/ data/ gridd ed/ data. ncep. reana lysis. html), 
respectively, covering the spatial range of 71–90°W, 
4–54°S during the same period (Gutiérrez et  al. 
2016).

The reconstructed catch data for these four PIES 
were sourced from the Large Marine Ecosystem 
(LME) dataset within the Sea Around US (http:// 
www. seaar oundus. org/; Zeller et  al. 2016; Liang 
et al. 2018), covering the period from 1950 to 2019. 
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These data were derived from the fisheries database 
of the Food and Agriculture Organization (FAO) and 
national datasets from countries bordering this eco-
system, taking into account discards during the fish-
ing processes (Pauly and Zeller 2016; Zeller et  al. 
2016; Liang et  al. 2018). Compared with previous 
studies on biomass or resource abundance changes for 
these species, the biomass trends relatively align well 
with the catch trends within the subset of the time 
series in this study, which indicates that these catch 
data could well reflect the changes in the true popula-
tion dynamics (Fig.  S1) (Arancibia and Neira 2008; 
Cahuin et al. 2015; Oliveros-Ramos et al. 2017; Yatsu 
and Kawabata 2017; Oozeki et  al. 2019). Therefore, 
the reconstructed catch data were used for the analy-
sis of regime shift related to the climate variability.

Dominant patterns of the regional environment

An empirical orthogonal function (EOF) analysis was 
employed to examine the primary variation patterns 
of SST and WS in the HCS (Litzow et al. 2018; Wang 
et  al. 2022). EOF analysis, also known as eigenvec-
tor analysis or principal component analysis (PCA), 
decomposes a physical field containing m spatial 
points that vary with time into nontemporal spatial 
modes and temporal patterns (Hannachi et  al. 2007; 
Litzow et al. 2018). This enables the spatiotemporal 
analysis of irregularly distributed grid points within 
a limited area (Litzow et al. 2018). In this study, spa-
tial modes and time coefcients (shortened as EOFs) 
were calculated and the first two principal compo-
nents for each were retained to focus on the dominant 
variation patterns of SST and WS within the HCS.

Regime shift detection

In this study, regime shift is defined as dramatic, 
abrupt changes in species catch association with 
multiple variables (Alheit and Niquen 2004; Con-
versi et al. 2015; Heymans and Tomczak 2016; Tian 
et al. 2023). Multiple regime shift detection methods 
were employed to detect trends and regime shifts in 
the time series of climate indices, EOFs, and PIES 
catches, including a sequential t-test analysis of 
regime shift (STARS), change point analysis, and 
Bayesian change point analysis (Zeileis et  al. 2003; 
Rodionov 2004, 2006; Aminikhanghahi and Cook 
2017; Tian et  al. 2023). After exploratory analyses 

with STARS, the cut-off length (L) and Huber weight-
ing factor were set to 15 and 1, respectively, with a 
significant level of 5%. Additionally, sensitivity anal-
yses of L for STARS and h for change point analysis 
were conducted to identify uncertainty in the results 
of STARS and change point analysis. Specifically, L 
was varied from 10 to 20 in equal increments over 
1000 runs of STARS, and h was varied from 0.1 to 
0.3 in equal increments over 1000 runs of change 
point analysis. Subsequently, the time nodes with 
higher frequencies were identified as regime shifts in 
climate indices, EOFs, and PIES catches. The STARS 
was conducted using the code provided by Stirnimann 
et al. (2019), while the change point analysis and the 
Bayesian change-point analysis was carried out using 
’strucchange’ and ’bcp’ packages in R, respectively.

Relationship between species catch and physical 
drivers

A correlation analysis was employed to explore the 
linear relationships among climate indices, EOFs, and 
PIES catches (Tian et  al. 2006; Litzow et  al. 2018; 
Ma et  al. 2019, 2020). In the correlation analysis, 
the impact of autocorrelation is mitigated by adjust-
ing the degrees of freedom in the significance test of 
the correlation coefcient (Chelton 1984; Pyper and 
Peterman 1998; Litzow et  al. 2018). The specific 
methods are as follows (Chelton 1984; Pyper and 
Peterman 1998; Litzow et al. 2018):

where N* and N represent effective degree of free-
dom and the length of time series, respectively. The 
 rXX and  rYY represent the autocorrelations of variable 
X and Y at a lag of j years, respectively.

A random forest (RF) analysis was employed 
to determine the contribution of climate and envi-
ronmental changes to the variations in each PIES 
catch within the HCS (Howard et  al. 2014). RF is 
an extension of decision trees, generating a large 
number of bagged decision trees through rand-
omization and combining their outputs using vot-
ing or averaging (Breiman 2001; Xu et  al. 2024). 
This method reveals significant interactions and 
nonlinear effects of predictor variables, and meas-
ures the relative importance of predictor variables 

(1)
1

N∗
≈

1

N
+

2

N

∝
∑

j=1

(N − 1)

N
rXXrYY
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on the response variable (Siroky 2009; Luan et  al. 
2020). In this study, the predictor variables for RF 
included climate indices and EOFs of environmen-
tal variables, while the response variable was each 
PIES catch. After exploratory analysis, the number 
of trees  (ntree) and the  mtry were set to 500 and 2 for 
all PIES, respectively. Additionally, predictive per-
formances were evaluated using a five-fold cross-
validation approach, in which the predictor and 
response datasets were randomly partitioned into 
five equal-sized folds. During the cross-validation, 
4/5 of the data was used for model training and the 
remaining 1/5 for testing, repeated 100 times for 
each PIES. The RF was conducted using the ‘ran-
domForest’ package in MATLAB.

Generalized additive models (GAM) and thresh-
old generalized additive models (TGAM) were 
employed to assess the response relationships 
between PIES catches in the HCS and climatic and 
environmental variations (Tsimara et al. 2021; Polo 
et al. 2022). GAM assumes an additive and station-
ary relationship between the response variables and 
explanatory variables, while TGAM captures abrupt 
changes in their relationship during specific years 
(Ciannelli et  al. 2004; Casini et  al. 2009; Damalas 
et  al. 2021; Hidalgo et  al. 2022; Polo et  al. 2022). 
For both GAM and TGAM, the response variables 
were the PIES catches in the HCS, while the pre-
dictors included climate indices and EOFs. To avoid 
the issue of collinearity among predictor variables 
and to identify whether there is a non-stationary 
response of species catch to each predictor variable, 
only one predictor was considered in each model 
run for GAM and TGAM. The distribution family 
and link function for both GAM and TGAM were 
Gaussian and identity, respectively. A “stationary” 
relationship formulated by GAM is more suitable 
for fitting a single function across the entire time 
series (Ciannelli et al. 2004):

where Y represent the response variables, X represent 
the predictors, and s, � and ϵ represent smooth func-
tion (with k ≤ 3 to avoid overfitting), intercept, and 
error terms, respectively. On the contrary, a “non-sta-
tionary” relationship assumed by TGAM is better for 
fitting different functions across different time periods 
(Puerta et al. 2019):

(2)Y = � + s(X)+ ∈

y is the threshold year that separates different time 
period with response variables to predictors, which is 
selected by minimizing the generalized cross valida-
tion (GCV) after running the model for every possi-
ble threshold year between the 0.1 lower and the 0.9 
upper quantiles of the time series (Casini et al. 2009; 
Vasilakopoulos et al. 2017). The “genuine” cross-val-
idation squared prediction error (gCV), proposed by 
Cianelli et al. (2004), was used to compare the fitness 
of GAMs and TGAMs with the response and explan-
atory variables and select the optimal model, which 
considered the estimation of the threshold line and 
the degrees of freedom for the functions in all station-
ary and nonstationary formulations (Vasilakopoulos 
et al. 2017; Hialgo et al. 2022). The basic GAM and 
TGAM functions used are included in the R package 
mgcv.

Results

Climate and regional environment variability

There were substantial variations in the climate indi-
ces on a decadal scale except SOI and Niño 1+2 
(Fig. 2). The PDO phase showed negative and posi-
tive fluctuations, with regime shift in 1975/76. A 
transition from a negative phase before an abrupt 
change to a positive phase occurred in NPGO, cor-
responding to regime shift in 1997/98. SOI and Niño 
1+2 both remained stable from the 1950s to the 
2010s, displaying significant interannual fluctuations 
but without regime shifts. The correlation results 
showed that PDO was positively correlated with Niño 
1+2 (r = 0.54, p < 0.001) but negatively correlated 
with SOI (r = −0.63, p < 0.001); SOI were negatively 
correlated with Niño 1+2 (r = −0.64, p < 0.001) and 
positively correlated with NPGO (r = 0.39, p < 0.05), 
respectively.

The first two modes of the SST in the HCS had a 
cumulative explanation of 72.69% of seawater tem-
perature variance, while that of WS was 50.99% 
(Fig.  3). EOF1SST revealed a long-term upward 
trend, whereas EOF2SST shifted from a negative 
phase before the regime shift node to a positive after-
ward, with regime shifts in 1976/77 and 1997/98, 

(3)Y(t) =

{

𝛼 + s(X)+ ∈t, ift < y

𝛼 + s(X)+ ∈t, ift ≥ y
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Fig. 2  Variations in climate 
indices A, the sensitiv-
ity results of STARS and 
change point analysis B 
(up-panel), and poste-
rior probability and the 
95% confidence intervals 
from 1000 model runs of 
Bayesian change point 
analysis B (low-panel). The 
bars represent the climate 
indices and time nodes with 
considerable probability of 
regime shifts, while the line 
graphs represent the regime 
means of the climate index 
detected by the sequential 
t-test analysis of regime 
shifts (STARS) in section 
A. The red and black bars 
represent the sensitivity 
results of STARS to cut-off 
length and h to change 
point analysis for climate 
indices in section B (up-
panel), respectively. The 
black lines represent the 
posterior probability from 
1000 model runs of Bayes-
ian change point analysis, 
while gray and blue lines 
represent upper confidence 
and lower confidence from 
1000 model runs of Bayes-
ian change point analysis 
in section B (low-panel), 
respectively.
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respectively. EOF1WS shifted from a negative phase 
before the mid-1990s to a positive phase afterward, 
while EOF2WS transitioned from a negative phase 
before the 1980s to a positive phase afterward, with 
regime shifts in 1975/76 and 1995/96 for EOF1WS, 
and in 1972/73 for EOF2WS, respectively. The cor-
relation results indicated that EOF1SST showed a 
positive correlation with PDO (r = 0.67, p < 0.001) 
and Niño 1+2 (r = 0.74, p < 0.001), but a negative 
correlation with SOI (r = −0.61, p < 0.001), whereas 
EOF2SST exhibited a negative correlation with Niño 
1+2 (r = −0.42, p < 0.05) and a positive correlation 
with SOI (r = 0.40, p < 0.05).

Variations in species catch

The proportion of pelagic species in the total pelagic 
group catch was highest for E. ringens, followed by 
S. sagax, T. murphyi, and then D. gigas. The cumu-
lative catch of these four species accounted for more 
than 94% from 1950 to 2019 (Fig.  4A-left). In line 
with the overall trend in pelagic group catch, the total 
catch of PIES showed a long-term increase from the 
late 1960s to the mid-1990s, followed by a decline 
(Fig. 4A-right).

The variations in catch volumes of PIES in dif-
ferent countries or regions exhibited notable dispari-
ties (Fig.  4B-left). For E. ringens, Peru had signifi-
cant interdecadal variations, with an increase in the 
1960s and from the mid-1980 to the early 1990s, 
and a decline in other periods. In Chile, changes in 
catch were relatively small, ranging from 0 to 3 mil-
lion tons overall. Regarding S. sagax, catch volumes 
were high in both Peru and Chile, exhibiting a syn-
chronized upward trend in the mid-1970s followed by 
a decline in Peru from the early 1990s and in Chile 
from the late 1980s. For T. murphyi, Chile had the 
highest catch volumes, showing a prolonged increase 
from the mid-1970s to the mid-1990s, followed by 
a gradual decline in the other periods. In contrast, 
the changes in catch in Peru were relatively small, 
with the highest annual catch being less than 1 mil-
lion tons. For D. gigas, Peru had the highest catch of 
all countries and regions, experiencing a significant 
increase since the late 1990s, followed by a decrease 
in the mid-2010s. Chile was next, with the catch 
increasing in the early 2000s and the 2010s, reach-
ing an annual peak about 310,000 tons. Meanwhile, 
the catch in China showed a long-term increase since 

2000, with the highest annual catch being 130,000 
tons in 2014.

The variations in catch of PIES exhibited signifi-
cant difference (Fig.  4B-right and C). Catch for E. 
ringens showed significant interdecadal changes with 
two regime shifts in 1971/72, and 1991/92. S. sagax 
catch volumes increased from the mid-1970s to the 
mid-1980s, followed by a decline, with regime shifts 
occurring in 1975/76 and 1991/92. The catch volume 
of T. murphyi exhibited an overall increase from the 
mid-1970s to the mid-1990s, followed by a decline, 
with two regime shifts in 1976/77 and 1997/98. In 
contrast, the catch of D. gigas showed a significant 
increase from the early 2000s, with a regime shift in 
1998/99.

Effects of climate and environment on changes in 
species catch

Regime shifts in the PIES catches in the HCS 
revealed a synchronic response to climate and envi-
ronmental variations (Table  1). In the mid-1970s, 
the regime shifts in catches of S. sagax and T. mur-
phyi corresponded to EOF1SST, EOF1WS, and PDO 
regime shifts. In the late 1990s, the regime shifts in 
catches of T. murphyi, and D. gigas corresponded to 
EOF2SST and NPGO regime shifts. Additionally, the 
correlation results between climate, environment, and 
species showed that the catch of D. gigas was posi-
tively correlated with EOF2SST (r = 0.43, p < 0.01) 
and EOF1WS (r = 0.73, p < 0.001).

RF analysis results showed difference in the 
importance of climate indices and environment on 
the variations in the PIES catch (Fig. 5). The impor-
tant climate indices and environmental variables were 
EOF2WS, EOF1WS, and EOF2SST for E. ringens 
catch  (R2 = 0.6704, RMSE = 0.2143), while that is 
EOF1WS, EOF2WS, and PDO for S. sagax catch  (R2 
= 0.7212, RMSE = 0.1729). For the variation in T. 
murphyi catch, the importance climate and environ-
ment were EOF2WS, PDO, and EOF1SST  (R2 = 
0.7014, RMSE = 0.2048), while the major driving 
factors affecting the D. gigas catch were EOF1WS, 
EOF2SST, and NPGO  (R2 = 0.7429, RMSE = 
0.181).TGAMs provided a better fit for the relation-
ship between PIES catches and physical drivers than 
GAMs (Fig. 6). Different years were distinguished by 
the threshold year based on the variations in GCV, 
indicating an alteration in the relationship between 
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PIES catches and physical drivers (Fig. 7). The best-
fitted model for the catch of E. ringens was non-sta-
tionary, with EOF2WS as the driver and the threshold 
year identified as 1991/92. Similarly, For the catches 
of S. sagax, T. murphyi, and D. gigas, the best-fitted 
models exhibited non-stationary, with EOF1WS as 
the driver and threshold years identified as 1975/76, 
1980/81, and 2002/03, respectively. The best-fitted 
TGAM curves exhibited distinct patterns before and 
after the selected threshold years, indicating a shift in 
the relationship between PIES catches and physical 
drivers across these threshold years.

Discussion

PIES response to climatic and environmental 
variations

To explore the long-term variations in PIES catches 
in the HCS and the response patterns to driving fac-
tors, four PIES with relative high catches were chosen 
as the research targets, E. ringens, S. sagax, T. mur-
phyi, and D. gigas, in combination with climate and 
environment data. Significant interannual and inter-
decadal variations in the PIES catches were identi-
fied, which strongly respond to climate and environ-
mental changes, but the response patterns showed 
both similarities and differences (Table1, Figs. 4 and 
5).

In the mid-1970s, regime shifts in S. sagax and T. 
murphyi catches mainly responded to their impor-
tant influencing factors such as EOF1SST, EOF1WS, 

and PDO, characterized by higher catches of them 
(Table 1, Figs. 4 and 5). The spatial modes of EOF-
1SST and EOF1WS both demonstrated strong con-
sistency, reflecting the long-term variations in sea 
surface temperature and wind speed within the HCS 
region (Figs. 3 and S2). In the HCS region, resources 
abundance and distribution of species may be primar-
ily related to physical processes such as upwelling 
transport (Montecinos and Gomez 2010). Sea tem-
perature and wind are key driving factors influencing 
the variability in upwelling intensity (Shi et al. 2023; 
Yari et al. 2023). Generally, higher wind speeds and 
lower sea temperatures promote Ekman transport, 
thereby enhancing upwelling intensity (García‐Reyes 
and Largier 2010; Putri et  al. 2021; Shi et  al. 2023; 
Yari et al. 2023). For S. sagax, PDO and EOF1WS, as 
the importance influencing factors for its catch vari-
ation, exhibited opposite change trends, indicating 
that the HCS exhibited regional environment char-
acterized by lower upwelling intensity and warmer 
conditions (Figs. 2, 3 and 5) (Quintana and Aceituno 
2012; Jacques-Coper and Garreaud 2015; Tam et al. 
2021; Cruz et al. 2022). Affected by warmer waters, 
biomass of large phytoplankton and zooplankton such 
as diatoms, large copepods, and euphausiids sharply 
declined, while the biomass of small phytoplankton 
(such as dinoflagellates) increased (Alheit and Niquen 
2004; Van der Lingen, et al. 2006; Rykaczewski and 
Checkley 2008; Bertrand et  al. 2011). This transfor-
mation created favorable conditions for the growth 
of S. sagax, leading to higher catch of this species 
(Alheit and Niquen 2004; Bertrand et al. 2004, 2011). 
The catch of T. murphyi was influenced by cold coast 
water and surface subtropical water (Dioses 2013). 
As the important influencing factors, PDO and EOF-
1SST showed same change trends, indicating that the 
southeast Pacific subtropical anticyclone weakened 
due to the transition of PDO (Figs. 2, 3, and 5) (Alheit 
and Niquen 2004; Bertrand et al. 2004). This change 
further led the oceanic subtropical water masses with 
warm temperature to shift into the coastal areas. As a 
result, warm, low-salinity equatorial and tropical sur-
face waters dominated the ecosystem regions, favor-
ing the development of the T. murphyi and conse-
quently increasing its catch (Alheit and Niquen 2004; 
Bertrand et al. 2004, 2016; Dioses 2013; Ancapichún 
and Garcés-Vargas 2015).

Moreover, under the effects of climate variability, 
species interactions may also influence the population 

Fig. 3  Variations in the first two modes of sea surface tem-
perature and wind speed within the Humboldt current system 
(HCS) A, the sensitivity results of STARS and change point 
analysis B (up-panel), and posterior probability and the 95% 
confidence intervals from 1000 model runs of Bayesian change 
point analysis B (low-panel). The bars represent the empiri-
cal orthogonal functions (EOFs) of the environment and time 
nodes with considerable probability of regime shifts, while the 
line graphs represent the regime means of the EOFs detected 
by the sequential t-test analysis of regime shifts (STARS) 
in section A. The red and black bars represent the sensitivity 
results of STARS to cut-off length and h to change point analy-
sis for EOFs in section B (up-panel), respectively. The black 
lines represent the posterior probability from 1000 model runs 
of Bayesian change point analysis, while gray and blue lines 
represent upper confidence and lower confidence from 1000 
model runs of Bayesian change point analysis in section B 
(low-panel), respectively.
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dynamics of these PIES. As the rise in seawater tem-
peratures and the coastal advancement of the warm 
oceanic subtropical water mass also expanded the 
overlapping areas in the spatial distribution of E. rin-
gens, S. sagax, and T. murphyi (Muck and Sanchez 
1987). This expansion increased the chances of T. 
murphyi preying on E. ringens juveniles and adults, 
and S. sagax consuming E. ringens eggs, nega-
tively affecting the E. ringens population (Muck and 
Sanchez 1987; Alheit and Niquen 2004). Conversely, 
for T. murphyi and S. sagax, the enhancement of 
favorable environmental conditions and increased 
feeding opportunities have a positive impact on their 
populations. This further influences the asynchronous 
pattern within this period, characterized by low E. 
ringens resources and high resources of S. sagax and 
T. murphyi (Arcos et al. 2001; Gutiérrez et al. 2016, 
2017, 2019; Salvatteci et al. 2018).

In the late 1990s, regime shifts in T. murphyi and 
D. gigas catches mainly responded to their impor-
tant influencing factors such as EOF2SST and 
NPGO, characterized by an increase in D. gigas but a 
decrease in T. murphyi (Table 1, Figs. 4 and 5). EOF-
2SST was largely consistent with NPGO oscillations, 
reflecting the complex eddy structures in the conver-
gence zones of ocean currents. Additionally, it may 
also reflect changes in the intensity of the southeast 
Pacific subtropical anticyclone (Figs.  2, 3, and S2). 
During this period, NPGO shifted from a negative 
phase to a positive phase, with EOF2SST showing 

decreasing trend, indicating that the HCS exhibited 
regional environment characterized by higher inten-
sity upwelling and colder conditions (Figs. 2 and 3). 
As a result, the catch of T. murphyi decreased as the 
intensity of the subtropical water masses weakened 
(Bertrand et  al. 2004; Diose, 2013; Bertrand et  al. 
2016). Conversely, the variation in the catch of D. 
gigas was opposite. Lower seawater temperatures and 
stronger coastal cold-water masses enhanced the hab-
itat suitability of D. gigas, leading to an increase in its 
catch (Yu and Chen 2018; Yu et al. 2019, 2021).

Non-stationarity between species catches and 
climate/environment

Previous studies have provided clear evidence of 
the nonstationary relationship between the North 
Pacific climate/environment and species or ecosystem 
changes (Litzow et  al. 2018, 2019; Ma et  al. 2020, 
2023; Wang et al. 2022). In this study, TGAMs bet-
ter fitted the relationship between PIES catches in the 
HCS and variations in climatic and environmental 
factors (Fig.  6). This implied that the non-stationar-
ity in the response relationship was found between 
species catches and driving factors such as climate/
environment within the HCS. The non-stationarity 
observed in the relationship between species and cli-
mate/environmental changes in this study was evident 
through distinct threshold years and varying fitting 
trends within specific periods (Fig.  7). These find-
ings highlighted the asynchronous non-stationarity in 
PIES in the HCS, which could be attributed to the dif-
ferent sensitivities in the biological characteristics of 
each species to climate variability (Kirby and Beau-
grand 2009; Beaugrand 2015; Ma et al. 2020).

The threshold years of the nonstationary relation-
ship between the catch of E. ringens and S. sagax, 
and climate/environment corresponded to the regime 
shift in their catch, coinciding with a sharp increase 
in both species catch (Table  1, Figs.  4 and 7). This 
change may be associated with the shifts between 
cold and warm periods in the HCS. These transitions 
directly influence the composition and biomass of 
planktonic organisms within the HCS, thereby affect-
ing the key species shift between the “cold period-E. 
ringens” and the “warm-S. sagax” within the HCS 
region (Alheit and Niquen 2004; Bertrand et  al. 
2004, 2011, 2016). In the early 1970s, despite the 
HCS entering a warm period, it was still dominated 

Fig. 4  The proportion of total catch of pelagic important eco-
nomic species (PIES) in the pelagic group total catch A (left), 
interannual variations in total catch of PIES and pelagic group 
total catch A (right), catch variations in fishing countries 
or regions of PIES B (left), decadal variations in PIES catch 
anomalies of B (right), the sensitivity results of STARS and 
change point analysis for PIES catches C (up-panel), and the 
95% confidence intervals from 1000 model runs of Bayesian 
change point analysis C (low-panel). The bars represent PIES 
catches anomalies and time nodes with considerable probabil-
ity of regime shifts, while the line graphs represent the regime 
means of catches anomalies detected by the sequential t-test 
analysis of regime shifts (STARS) in section B (right). The red 
and black bars represent the sensitivity results of STARS to 
cut-off length and h to change point analysis for PIES catches 
anomalies in section C (up-panel), respectively. The black 
lines represent the posterior probability from 1000 model runs 
of Bayesian change point analysis, while gray and blue lines 
represent upper confidence and lower confidence from 1000 
model runs of Bayesian change point analysis in section C 
(low-panel), respectively.
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by E. ringens (Fig. 4). However, with the strengthen-
ing and southward shift of the Aleutian Low in the 
mid-1970s, the warm state intensified, leading to a 

significant increase in the biomass and catch volumes 
of S. sagax, while those of E. ringens decreased sub-
stantially (Fig. 4) (Alheit and Niquen 2004; Bertrand 
et al. 2004; Oliveros-Ramos et al. 2017; Oozeki et al. 
2019). This marked the period of S. sagax dominance 
in the HCS (Alheit and Niquen 2004; Bertrand et al. 
2004, 2011; Alheit et  al. 2009). By the early 1990s, 
with the complete end of the warm period in the HCS 
and a notable increase in E. ringens catch, the ecosys-
tem shifted back to a period dominated by E. ringens 
(Ballón et al. 2011; Bertrand et al. 2004, 2011; Sal-
vatteci et al. 2018).

The regime shifts in the catch of T. murphyi 
occurred in the mid-1970s, while the threshold year 
of the nonstationary relationship emerged in the 
1980s (Table  1, Fig.  7). This may be related to the 
transitions between strong and weak phase of pres-
sure system (Litzow et  al. 2018; Wang et  al. 2022; 
Ma et  al. 2023). During the 1980s, PDO showed 
decreased correlations with EOF1WS and EOF2WS, 
while NPGO exhibited increased correlations with 
them (Fig. S3). This suggested that the phenomenon 
that the Aleutian Low-forced change in the relative 
importance of PDO and NPGO to the regional envi-
ronment variability may also exist within the HCS. 
The changing relative importance of PDO and NPGO 
may result in consistent alterations in regional oce-
anic physical processes such as seawater temperature 
fields and ocean currents within the Pacific ecosys-
tem region. These changes subsequently impacted the 
PIES catches in the HCS (Alheit and Niquen 2004; 
Yeh et al. 2009; Di Lorenzo et al. 2010; Litzow et al. 
2018; Ma et al. 2020). The correlation results showed 

Table 1  The correlation 
among climate indices, 
region environmental 
variables, and species 
regime shift

1960s 1970s 1980s 1990s 2000s

Climate PDO 1976
NPGO 1998
SOI
Niño 1+2

Environment EOF1SST 1977
EOF2SST 1998
EOF1WS 1976 1996
EOF2WS 1973

Species E. ringens 1972 1992
S. sagax 1976 1992
T. murphyi 1977 1998
D. gigas 1999

Fig. 5  The importance of climate indices and EOFs of envi-
ronment ranked by the feature importance of the random forest 
analysis for each PIES.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Rev Fish Biol Fisheries 

Vol.: (0123456789)

a significant relationship between the catch of D. 
gigas and EOF2SST and EOF1WS, respectively, sug-
gesting that climate variability primarily influenced 
the catch of D. gigas through regulating environmen-
tal conditions (Fig.  5). From the late 1990s to the 
early 21st century, NPGO exhibited a positive trend, 
with EOF2SST and EOF1WS showing decreasing 
and increasing trend (Figs.  2  and 3). This indicated 
that the cold and high upwelling intensity regional 
environment in the HCS during this period was con-
ducive to D. gigas stock.

This study investigated the nonstationary rela-
tionship between PIES in the HCS and climate/envi-
ronment, and preliminarily analyzed and discussed 
the potential mechanism for this non-stationarity. 
However, the causes of a nonstationary relation-
ship between species or ecosystem structure and the 
physical drivers are complex, apart from quantifiable 
abiotic factors such as variations in climate and envi-
ronment, which might also be correlated with spe-
cific ecological interactions within the ecosystem or 
between species, as well as fishing activities (Schmidt 

et al. 2014; Litzow et al. 2018). Therefore, the influ-
ence of biological and ecological factors on long-
term changes in species catch or ecosystem struc-
ture must also be considered. This will help us better 
understand the mechanisms behind the nonstationary 
relationship between species or ecosystems and the 
influencing factors. This understanding will provide 
support for stock assessment and ecosystem-based 
fisheries management (Dorman et  al. 2011; Schmidt 
et al. 2014).

Implications for fisheries management of pelagic 
species in the HCS

The HCS is a typical upwelling ecosystem, where 
changes in ecosystem structure become more promi-
nent and rapidly evident than in other types of ecosys-
tems under the influence of climate variability, espe-
cially in the synchronous response of PIES catches 
(Cahuin et al. 2015; Salvatteci et al. 2018). Therefore, 
clarifying the historical response of PIES to driving 
factors is crucial for formulating adaptive measures 

Fig. 6  Model comparisons between stationary and nonstation-
ary models. Gray bars show the “genuine” cross-validation 
squared prediction error (gCV) of stationary models (GAMs) 

and light gray column chart with black border bars show the 
gCV of non-stationary models (TGAMs), respectively.
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to cope with future climate change. As highlighted by 
the results of this study, species with diverse biologi-
cal characteristics demonstrated varying sensitivities 
to climate and environmental variations.

For these four important species, the interdec-
adal fluctuations in their catch synchronize with the 
shifts between warm and cold phases of the HCS, 
emphasizing the critical importance of monitoring 
the regional environmental conditions of the ecosys-
tem. For example, long-term monitoring of seawater 
temperature, upwelling intensity, and the biomass of 
various planktonic organisms is particularly crucial 
for E. ringens and S. sagax (Bertrand et  al. 2004, 
2011, 2016). This helps us more effectively identify 
periods of cold and warm phase in the ecosystem, 
thereby distinguishing between E. ringens and S. 
sagax regimes. Of course, the key driver behind this 
nonstationary relationship is climate variability, so 

efforts should be intensified to explore the mecha-
nisms of climate variability, given the uncertainty 
associated with it (Damalas et  al. 2021). Analyz-
ing regime shifts in PIES catches driven by climate 
variability can help establish early warning indica-
tors for species abundance variations, aiding fish-
eries management at the species, community, and 
ecosystem levels (Litzow and Hunsicker 2016; Polo 
et  al. 2022). The total allowable catch (TAC) can 
be optimized based on these indicators, and cor-
responding fisheries management policies can be 
adjusted for interannual or decadal climate changes 
in the future. Additionally, considering the cascad-
ing effects, this approach promotes the development 
of an adaptive ecosystem management framework 
and supports the dynamic resilience of ecosystems 
(Litzow and Hunsicker 2016; Damalas et  al. 2021; 
Hidalgo et al. 2022).

Fig. 7  Generalized cross-validation score (GCV) paths of the 
best-fitted models in model comparison and the relationships 
were fitted by the best-fitted models. The black lines represent 
threshold years that are characterized by concave GCV paths. 

Blue and purple represent different eras with distinguished 
models, while the dashed line represents the confidence inter-
val. Figures represent the years from 1950 to 2019.
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There were no other long-term time series avail-
able for fishery-independent or dependent biomass 
indices to be supplemented to give more confidence 
on the results of this study. Therefore, the catch 
data for these four species were utilized in this 
study as proxies for species relative abundance or 
supplementary indicators to analyze the response 
of species fishery resources to large-scale climate 
and regional environmental variations. The vari-
ations in species catch are affected by many fac-
tors, fishery factors (such as fishing intensity, fish-
ing methods, etc.), and biological characteristics 
of species (such as migration, etc.) also influence 
the catch except climate and environment. There is 
the potential controversy regarding whether catch 
data reflect the abundance of marine species (Pauly 
et  al. 2013). However, the catch data may provide 
a better description of the actual trends of different 
species under appropriate conditions (Froese et al. 
2012; Pauly and Zeller 2016; Tsimara et al. 2021).

The PIES catch data used in this study belonged 
to reconstructed data, and the variation trends in 
catch among different fishing countries or regions 
for various species were basically consistent. 
Moreover, the recovery of E. ringens catch fol-
lowing different intensities of El Niño events, 
with slower recoveries after the El Niño events in 
1972/73 and 1982/83 but faster recoveries after 
the El Niño event in 1997/98 (Fig.  4). This vari-
ation is consistent with previous findings on the 
recovery of E. ringens biomass following dif-
ferent intensities of El Niño events (Bakun and 
Broad 2003; Alheit and Niquen 2004). Addition-
ally, the biomass and resource abundance trends of 
S. sagax, T. murphyi, and D. gigas relatively align 
well with the catch trends within the subset of the 
time series covered by our study (Fig.  S1) (Aran-
cibia and Neira 2008; Cahuin et al. 2015; Oliveros-
Ramos et  al. 2017; Yatsu and Kawabata 2017; 
Oozeki et al. 2019). Therefore, the changes in spe-
cies catches can reflect the variations in species 
biomass in the study area to a certain extent. Thus, 
while the present study documented a nonstation-
ary response for PIES catches within the HCS to 
large-scale climate and regional environment, we 
believe that it could reflect the response patterns of 
the species biomass to climate and environment to 
a certain degree.

Conclusions

A combination of large-scale climate data, regional 
environment data, and catch data of PIES in the 
HCS were analyzed to identify regime shifts in 
climate indices, environmental variables, and 
PIES catches, and to explore the potential mecha-
nisms of climate variability impacts on variations 
in PIES catches. The conclusions were as follows: 
(1) Synchronic regime shifts were identified in cli-
mate, environmental variables, and PIES catches, 
occurring in the mid-1970s and late 1990s; (2) In 
the mid-1970s, the regime shifts in catches of S. 
sagax and T. murphyi corresponded to EOF1SST, 
EOF1WS, and PDO regime shifts; In the late 1990s, 
the regime shifts in catches of T. murphyi, and D. 
gigas corresponded to EOF2SST and NPGO regime 
shifts; (3) The important climate and environmen-
tal factors influencing the variations in the PIES 
catches exhibited both similarities and differences. 
(4) Nonstationary relationships were identified 
between climate/environment and species catches, 
with different species showing different threshold 
years; (5) The non-stationarity between climate/
environment and species catches may be attributed 
to the transitions between warm and cold periods 
within the HCS driven by the phase transition of 
climate, as well as shifts between strong and weak 
phases of the pressure system. This study furthers 
our understanding of the changes in ecosystem 
structure in the HCS driven by climate variability, 
emphasizing the significance for the management of 
marine biological resources within this ecosystem. 
The effects of climate variability should be fully 
considered in the formulation of fisheries manage-
ment strategies for this ecosystem in the future.
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